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COLD-AIR ANNULAR-CASCADE INVESTIGATION OF AERODYNAMIC PERFORMANCE

OF CORE-ENGINE-COOLED TURBINE VANES

I - SOLID-VANE PERFORMANCE AND FACILITY DESCRIPTION

by Louis J. Goldman and Kerry L. McLallin

Lewis Research Center

SUMMARY

The aerodynamic performance of a solid (uncooled) version of a core engine cooled
stator vane was experimentally determined in a full-annular cascade, where three-
dimensional effects could be obtained. This vane was of the same size and profile as
the cooled vanes to be subsequently tested and would serve as a basis of comparison for
these tests. The solid vanes were tested over a pressure ratio range that corresponds
to mean-radius ideal aftermixed critical velocity ratios of 0. 57 to 0. 90. The design
value for the vane is 0. 778. Vane surface static-pressure distributions were measured
and corresponding critical velocity ratios were compared with theoretical results. The
variation in vane efficiency and aftermixed flow conditions with circumferential and
radial position were obtained and compared with design values. Overall vane aftermixed
efficiencies were obtained over this critical velocity ratio range and compared with re-
sults obtained in a two-dimensional cascade.

It was found that the experimental vane surface critical velocity ratio distributions
agreed well with the theoretical calculations. At the vane exit survey plane two vortex
cores of high loss concentration were noted at the corners formed by the end walls and
the suction surface of the vanes. These loss regions were associated with secondary
flows in the'annular cascade. In the vortex regions, the aftermixed flow angle was found
to be underturned by about 20 to 40 .

The overall aftermixed efficiency and the aftermixed efficiency at the mean radius
for design critical velocity ratio were 0. 960 and 0. 978, respectively, and varied only
slightly with critical velocity ratio over the range investigated. The kinetic energy
losses due to end wall boundary layers and secondary flow was experimentally deter-
mined to be 0. 018 at the design critical velocity ratio. It was analytically determined
that the end wall boundary layer loss was 0. 007 and therefore the loss due to secondary
flow was 0. 011 for this vane.



INTRODUCTION

Research studies are being conducted at the NASA Lewis Research Center to inves-

tigate the performance of air-cooled blading for high-temperature core-engine turbines.

As part of this effort, the performance of a solid (uncooled) core turbine (half scale) has

been obtained and reported in reference 1. These results will form the basis for conim-

parison with the cooled versions of the core turbine. The performance of the solid core

turbine stator vanes (full size), tested in a two-dimensional cascade, has been reported

in reference 2. These results, although indicative of the vane performance at the mean

section, do not include end wall or secondary flow losses. Because of the relatively

small-sized blading and the low aspect ratio (vane height to vane axial chord of one)

both of these losses may be significant.

Consequently, an investigation was undertaken wherein the core-turbine stator vane

(full size and same aerodynamic profile as refs. 1 and 2) would be studied in a full-

annular cascade where three-dimensional effects could be obtained. The annular cas-

cade was designed primarily for cold-air studies at a primary-to-coolant total temper-

ature ratio of 1. The first phase of the study was to obtain the three-dimensional

performance of the (uncooled) solid vane. Comparison with the two-dimensional cascade

results would then indicate the significance of the end wall and the secondary flow losses.

Subsequent studies would then determine the performance of different vane cooling

schemes for comparison with the full-annular solid vane results.

The investigation of the solid vanes was conducted over a pressure ratio range that

corresponded to mean-radius ideal aftermixed critical velocity ratios of 0. 57 to 0. 90.

The design value for the vane at the mean section is 0. 778. Annular surveys were made

downstream of the vane trailing edge for this range of critical velocity ratios. Vane

surface static-pressure measurements were obtained near design critical velocity ratio.

This report includes a description of the full-annular cascade facility and presents

the experimental results for the solid vane. Vane surface critical velocity ratios cor-

responding to the surface static-pressure measurements are compared with theoretical

results. The variation in vane efficiency and flow conditions with circumferential and

radial position are presented. In addition, overall vane efficiencies were obtained and

compared with the results from the two-dimensional cascade (ref. 2).

SYMBOLS

g force-mass conversion constant, 32. 174 lbm-ft/lbf-sec 2

p pressure, N/m 2 ; lbf/ft 2

R gas constant, J/(kg)(K); ft-lbf/(1bm)(oR)
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r radial direction, m; ft

T temperature, K; 0R

V velocity, m/sec; ft/sec

X vane coordinates (fig. 3), cm; in.

Y vane coordinates (fig. 3), cm; in.

a flow angle measured from axial direction, rad; deg

Y ratio of specific heats

77 local efficiency based on kinetic energy

77 efficiency at radius r based on kinetic energy

77 overall efficiency based on kinetic energy

0 circumferential direction, rad; deg

p density, kg/m3; lbm/ft3

Subscripts:

cr flow condition at Mach 1

i survey position closest to inner (hub) wall

id ideal or isentropic

L lower surface

mean mean radius

o survey position closest to outer (tip) wall

s vane surface

U upper surface

z axial direction

0 station at inlet plane of cascade bellmouth (fig. 2)

1 station at vane inlet (fig. 2)

2 station at vane trailing edge (fig. 2)

3 station downstream of vane trailing edge where survey measurements were
taken (fig. 2)

3M station downstream of vane trailing edge where flow is assumed to be circum-
ferentially mixed (uniform) (fig. 2)

Superscript:

' total-state condition
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APPARATUS AND PROCEDURE

Cascade Facility

The ull-annular cascade facility consists primarily of an inlet section, a test sec-

tion, and an exit section. The actual facility and a cross-sectional view of the facility

are shown in figures 1 and 2, respectively. In operation, atmospheric air is drawn

through the inlet section, the blading, and the exit section and then exhausted through the

laboratory altitude exhaust system.

Inlet section. - The inlet, consisting of a bellmouth and a short straight section,

was designed to accelerate the flow to uniform axial flow at the vane inlet. The bell-

mouth profile was designed to provide a smooth transition to the straight section.

Test section. - The test section consists of a sector of five vanes which are part of

the full-annular ring of 36 vanes. As seen in figure 2, the vanes pass through two hol-

low annular rings. This allows cooling air to be independently supplied to both the vanes

and end walls. For the solid (uncooled) vane investigation reported herein, all 36 vanes

were identical and no end wall cooling was employed. For subsequent cooling investiga-

tions, the same five-vane test sector will be employed.

The stator vane geometry (same aerodynamic profile as refs. 1 and 2) is shown in

figure 3. The untwisted vanes, of constant profile from hub to tip, have a height of

3. 81 centimeters (1. 50 in.), an axial chord of 3. 823 centimeters (1. 505 in.), and a

trailing edge radius of 0. 089 centimeter (0. 035 in.). The vane aspect ratio and the

solidity at the mean section are 1. 00 and 0. 93, respectively (based on axial chord). The

stator hub-to-tip radius ratio is 0. 85 and the mean radius is 23. 50 centimeters (9. 25

in.). For completeness, the core turbine velocity diagram is shown in figure 4.

Exit section. - The exit section consists primarily of a diffusing section and a flow-

straightening section. The diffusing section was designed to decelerate the flow grad-

ually downstream of the test section. Because of mechanical failure, the diffuser was

removed for this investigation (see fig. 2). This removal resulted in a more rapid de-

celeration of the flow but did not seem to affect cascade operation. The flow straight-

ener was designed to turn the swirling flow back to the axial direction prior to its enter-

ing the laboratory exhaust system. The straightener consists of a bundle of short tubes

with centerlines parallel to the cascade axis (fig. 2).

Instrumentation

Instrumentation was provided to measure wall static pressures at various locations,

vane surface static pressures at different radii, and survey data of total pressure, static
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pressure, and flow angle downstream of the test vanes. Figure 2 shows the station no-

menclature used for the instrumentation.

Inlet total conditions. - Total temperature and pressure were measured at the cas-
cade inlet (station 0). The total temperature of the entering room air was measured by

four copper-constantan thermocouples located 900 apart circumferentially at the bell-

mouth inlet. The ambient total pressure was measured by a barometer.

Wall static pressures. - Static pressures were measured at various locations in the

cascade by pressure taps located on both the inner (hub) and outer (tip) wakis. At a dis-

tance of one axial-chord length upstream of the vane inlet (station 1), four taps -were lo-

cated 900 apart circumferentially. These static pressures were used to ascertain the
uniformity of the flow entering the vanes as well as to provide information for estimating

the incoming airflow rate. At the exit survey plane (station 3), 8 taps spanning the test

vanes were located as shown in figure 5. These pressures were used to indicate the

uniformity of the flow in the test section. Two static taps (inner and outer wall) were

also located 10. 2 centimeters (4.0 in.) downstream of the vanes where it was felt that

the flow would be mixed to relatively uniform conditions (station 3M). The hub static

pressure was used to set the flow conditions in the cascade.

Vane surface static pressures. - For the initial tests, two of the test vanes were

instrumented with a total of 42 surface static-pressure taps as shown in figure 6. One

vane was instrumented with 20 taps located at the mean radius. The second vane had

22 taps which were divided equally between sections located 0. 51 centimeter (0. 20 in.)

from the vane hub and tip (fig. 6). As figure 6 shows, the pressure tubing was installed

in grooves machined into the vane surface. After the tubing was installed, the grooves

were filled and faired to the contour of the vane surface. The static-pressure taps were

0. 051 centimeter (0. 020 in.) in diameter and normal to the vane surface. Subsequent

testing was performed by removing the two instrumented vanes and replacing them with

noninstrumented solid vanes. This was done to ensure that the measured performance

did not include any losses that might have been caused by the presence of the vane sur-

face taps.

Survey probes. - Two different survey probes were used sequentially at the survey

plane (station 3) to obtain the vane performance. A combination probe (fig. 7) was used

initially for measurements away from the end walls. After completion of these measure-

ments, the combination probe was removed and replaced with a two-element total pres-

sure probe (fig. 8) for measurements near the walls. The survey plane (station 3) was

located 1.3 centimeters (0.5 in.) downstream of the vane trailing edge in the axial direc-

tion. Both probes were positioned at a fixed angle of 670 from the axial direction, which

corresponds to the design flow angle.

The calibrated combination probe measured total pressure, static pressure, and

flow angle. The probe tip was made of stainless-steel tubing with an outside diameter

of 0. 067 centimeter (0. 030 in.) and a wall thickness of 0. 008 centimeter (0. 003 in.).
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The total pressure tube had an inside bevel of 300 (see fig. 5) which reduces the sensi-

tivity of the measurement to flow angle (ref. 3). The loss in total pressure was meas-

ured using a differential pressure transducer referenced to atmospheric pressure.

Static pressure was measured by using a Prandtl tube. The flow angle was determined

from the measured pressure difference of two 45 0 -angled tubes (fig. 5) as described in

reference 4. The survey area, which included the middle three of the five test vanes,

is shown in figure 5.

For surveys near the end walls a two-element total pressure probe (fig. 8) was

used. The probe tip was made of stainless-steel tubing with an outside diameter of

0.051 centimeter (0.020 in.) and an inside diameter of 0. 038 centimeter (0. 015 in.).

The total pressure tubes again had an inside bevel of 300. The upper element of the

probe was used for measurements near the tip wall while the lower element was used

near the hub wall.

Procedure

To operate the cascade facility, atmospheric air from the test cell was drawn

through the cascade and exhausted into the laboratory altitude exhaust system. The test

conditions were set by controlling the pressure ratio across the vane row with two

throttle valves located in the exhaust system. The hub static tap located downstream of

the test section, where the flow was assumed to be circumferentially uniform (sta-

tion 3M), was used to set this pressure ratio.

The solid vanes were tested over a pressure ratio range that corresponded to mean-

radius ideal aftermixed critical velocity ratios (V3M/Vcr, 3M)id, mean of 0.57 to 0.90.

The design value for the vane is 0. 778. At a given pressure ratio, probe survey data

were obtained at a number of different radii over the vane height. At any fixed radius,

the probe was moved circumferentially over three vane passages with survey data being

obtained continuously. The slow speed of the circumferential drive mechanism coupled

with the data recording rate resulted in a cycle of survey data (i. e., probe position,
total pressure, static pressure, and flow angle) being obtained at approximately 0. 080

increments. The vane spacing in the annular cascade is 100. The output signals of the

calibrated pressure transducers were digitized and recorded on magnetic tape.

Data Reduction

The solid vane performance presented herein was calculated from the combination

survey probe measurements of total pressure, static pressure, flow angle, and probe

position. For the end wall survey probe where only total pressure was measured it was
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necessary to estimate the static pressure and flow angle. The static pressure was as-
sumed to vary linearly between the hub and tip wall values. Since the flow angle has no

apparent effect on the calculated vane performance, a constant value of 670 was assumed.

Data from the middle wake (of the three wakes that were measured) were used in these

calculations.

The calculation of the vane efficiency is based on the determination of a hypothetical

state where it is assumed that the flow has mixed to a circumferentially uniform condi-
tion (station 3M). At each radius, the conservation of mass, momentum, and energy is

used to obtain this aftermixed state (i. e., V3M, z(r), V3 M(r), p3M(r), T 3 M(r), a3M(r),
etc.) from the survey measurements. The calculation procedure is described more

fully in reference 5. The aftermixed vane efficiency is used herein because it is theo-

retically independent of the axial location of the survey measurement plane. It should be

noted that the aftermixed efficiency contains not only the vane profile loss but also the

mixing loss.

For solid vanes, the vane aftermixed efficiency based on kinetic energy can be de-

fined as a function of radius 3 M(r) or as an overall quantity 773M' as given by the fol-

lowing equations from reference 5:

2
V3 M(r)

3M(r) 2 (1)

3M, id ( r )

f r02
Pr 

3 M(r)V 3M, z(r)V3M(r)r dr

Th= 2i2
J3M ro P3 M(r)V 3M z(r)V2M, id(r)r dr (2)

1

where

V3 M, id(r)= 2 g)RTo1 -IP3M(r) (Y- 1)/ (3)-r gT (3)
2y 

J~]f _F

In the preceding equations, it has been assumed that the total pressure and temperature

at the vane inlet (station 1) are equal to the total pressure and temperature at the cascade

inlet (station 0).
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RESULTS AND DISCUSSION

Vane Surface Critical Velocity Ratio Distributions

The vane surface critical velocity ratio distributions corresponding to the static

pressures measured at the hub, mean, and tip radii are presented in figure 9. The sur-

face distributions are compared with the theoretical results obtained from the computer

programs CHANEL and TSONIC, described in references 6 and 7, respectively.

CHANEL is a quasi-three-dimensional flow program but is limited to the guided portion

of the vane-passage. The TSONIC program calculates the flow conditions for the entire

passage but is limited to two-dimensional flow. The variation of stream sheet thickness

with axial position, which is needed as input for TSONIC, was obtained from the CHANEL

results. Using the experimental exit conditions of weight flow, flow angle, and total

pressure loss as input for TSONIC resulted in good agreement between the theoretical

and experimental results. The CHANEL results are shown in figure 9 for comparison,

and in general indicate more vane loading than either the experimental results or the

TSONIC results. The differences in the theoretical results are due to the assumption

made in CHANEL as to the variation of streamline curvature in the blade-to-blade direc-

tion. No such assumption is needed for TSONIC and therefore complete agreement be-

tween the two programs is not expected.

Survey Plane Flow Conditions and Vane Performance

The exit flow angle and critical velocity ratio at the survey plane (station 3) are

shown in figure 10, for data obtained at the mean radius at an ideal aftermixed critical

velocity ratio of 0.785. For comparison, the theoretical results obtained from TSONIC

are also shown in the figure. The experimental and theoretical variation of exit flow

angle are in good agreement. The critical velocities also agree well in the free-stream

region. In the wake region, agreement was not expected since TSONIC is an inviscid

solution. The experimental exit measurements are seen to be essentially periodic over

the total survey travel.

A computer plot of efficiency contours is shown in figure 11 for a single vane pas-

sage tested at an ideal aftermixed critical velocity ratio of 0. 785. The projection of the
trailing edge to the survey plane, using the experimental flow angles, is also shown in

the figure. Two cores of high loss (minimum efficiencies of about 0.72), centered at

approximately 10 and 80 percent of the vane height, are located on the suction surface

side of the trailing edge projection. These loss regions are associated with the second-
ary flows (ref. 8) which are formed when the boundary layers on the annulus walls are
deflected through the vane passage (from pressure to suction surface of adjacent vanes).
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This flow is then turned away from the end walls and rolls up to form passage vortexes

in the corners formed by the end walls and the vane suction surface. The relatively

large portion of the vane passage that is occupied by the vortex cores is typical of low

aspect ratio vanes as seen, for example, by the results of reference 9.

Calculated Aftermixed Flow Conditions and Vane Performance

As discussed in the Data Reduction section, the aftermixed conditions, at each ra-

dius, are obtained from the survey measurements by application of the conservation of

mass, momentum, and energy. The variation of aftermixed flow angle, a3 M(r) and

aftermixed static-to-inlet total pressure ratio p3M(r)/po with radial position, at an

ideal aftermixed critical velocity ratio of 0. 785, is shown in figure 12. The aftermixed

flow angle is lower than the design value in the vortex core regions by about 20 to 40.

Near the tip wall the flow is overturned, which is consistent with the end wall crossflow

from pressure to suction surface discussed previously. It is expected that similar re-

sults would have been obtained near the hub wall if flow angle measurements could have

been obtained closer to the wall. The aftermixed static-to-inlet total pressure ratio

varies almost linearly with radial position and agrees well with the design values.

The variation of aftermixed efficiency i 3 M(r) with radial position at an ideal after-

mixed critical velocity ratio of 0. 785 is shown in figure 13. Results from both the com-

bination and end wall total pressure probes are shown in the figure. Although the end

wall total pressure probe was used primarily to obtain the losses near the walls, it was

also used to take a complete radial survey over the vane height which shows excellent

agreement with the results of the combination probe.

The higher losses of the vortex core regions are clearly noted in the figure. Mini-

mum aftermixed efficiencies of 0.939 and 0. 944 were obtained for the hub and tip vor-

tices, respectively. A maximum efficiency of 0. 978 was obtained at the mean radius.

At the walls the efficiency drops off sharply because of the high losses associated with

the end wall boundary layers.

The overall aftermixed efficiency (3M as a function of ideal aftermixed critical ve-

locity ratio is shown in figure 14. For comparison, the two-dimensional cascade results

(ref. 2) and the annular cascade results at the mean radius are also shown in the figure.

These two efficiencies (which are indicative of the vane profile losses) are seen to be in

good agreement except at the higher critical velocity ratios. Also shown, as a solid

symbol, is the two-dimensional vane efficiency predicted analytically. Vane boundary-

layer parameters were calculated assuming a turbulent boundary layer at the vane inlet

using the computer program described in reference 10. Losses were then calculated by

the method described by Stewart in reference 11. Reasonable agreement between theory

and experiment was obtained. The overall aftermixed efficiency and the aftermixed
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efficiency at the mean radius for design critical velocity ratio are 0. 960 and 0. 978, re-
spectively, and vary only slightly with aftermixed critical velocity ratio. The difference
in the mean radius and overall aftermixed efficiencies is 0. 018 (i. e., 0. 978 - 0. 960) at
design critical velocity ratio and is due to end wall and secondary flow losses. Second-
ary flow losses will be discussed in the next section.

Secondary Flow Losses

In the previous section, the kinetic energy. loss due to the end wall boundary layers
and secondary flow was determined to be 0. 018 at the design critical velocity ratio. Be-
cause the secondary flow losses for small aspect ratio vanes is generally a significant
portion of the total loss, an attempt to isolate this portion of the loss is desirable. To
accomplish this the loss produced by the end wall boundary layers was first theoretically
determined. The boundary layer growth on the end walls was calculated using the in-
viscid pressure distributions along the mean blade-to-blade streamlines near the hub and
tip walls. This is a reasonable assumption since it is representative of the end wall loss
had no secondary flow occurred. Therefore, the difference between the experimentally
determined end wall and secondary flow loss (0. 018) and the idealized end wall boundary
layer calculation would represent the loss caused by secondary flow.

The end wall boundary layer parameters were calculated using the computer pro-
gram described in reference 10. The inviscid mean blade-to-blade streamline pressure
distribution through the vane passage was obtained from the TSONIC computer program
(ref. 7). The end wall aftermixed kinetic energy losses were then calculated using Ste-
wart's method (ref. 11) and determined to be 0. 007 at the design critical velocity ratio.
The kinetic energy loss due to secondary flow is, therefore, estimated to be 0. 011
(i. e., 0. 018 - 0. 007). Since the total vane loss is 0. 040 (i. e., 1 - 0. 960), the sec-
ondary flow loss represents about 28 percent of the total vane loss.

Besides causing an appreciable stator loss, the secondary flow may also produce
rotor incidence losses due to the stator exit flow angle maldistribution (see fig. 12). To
determine this effect, rotor incidence angles were calculated from the measured stator
exit flow conditions and design wheel speed. These are shown in figure 15 as are the
design incidence angles. The effect of incidence on the core rotor blade losses has been
experimentally determined in reference 12. Using this data, any additional incidence
loss caused by the secondary flow over that which would occur for the design incidence
angles was determined to be negligible. However, the effect of the stator secondary
flow on the rotor secondary flow losses is not known.

The decrease in stator performance caused by secondary flow is likely to have a
significant effect on turbine stage performance. Therefore, methods for reducing sec-
ondary flow effects are particularly important for small aspect ratio core turbines. A
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number of techniques for reducing secondary flows have been reported in the literature.
Some of these include blade twist (ref. 13), end wall contouring (ref. 14), and boundary
layer fences on the vanes and end walls (ref. 9). For cooled stators it may also be pos-
sible to use the injected coolant to modify the secondary flow patterns.

SUMMARY OF RESULTS

The aerodynamic performance of a solid (uncooled) version of a core engine cooled

stator vane was experimentally determined in a full-annular cascade, where three-

dimensional effects could be obtained. The vanes were tested over a pressure ratio

range that corresponds to mean-radius ideal aftermixed critical velocity ratios of 0. 57

to 0. 90. The design value for the vane is 0. 778. Vane surface static-pressure distri-

butions were measured and corresponding critical velocity ratios were compared with

theoretical results. The variation in vane efficiency and aftermixed flow conditions with

circumferential and radial position were obtained and compared with design values.

Overall vane aftermixed efficiencies were obtained over this critical velocity ratio range

and compared with results obtained in a two-dimensional cascade. The results of the

investigation are summarized as follows:

1. The experimental vane surface critical velocity ratio distribution agreed well
with the theoretical calculations obtained from the computer program TSONIC.

2. Efficiency contour plots at the vane exit survey plane indicated two vortex cores
of high loss concentration (minimum efficiencies of about 0. 72) located at the corners
formed by the end walls and the suction surface of the vanes. These loss regions are

associated with the secondary flows which are formed when the end wall boundary layers

are deflected, from pressure to suction surface, in passing through the vane passage.
3. The aftermixed flow angles were found to be underturned in the vortex core re-

gions by about 20 to 40 . Minimum aftermixed efficiencies of 0. 939 and 0. 944 were ob-

tained for the hub and tip vortexes, respectively.

4. The overall aftermixed efficiency and the aftermixed efficiency at the mean radius
for design critical velocity ratio are 0. 960 and 0. 978, respectively, and vary only,
slightly with aftermixed critical velocity ratio over the range investigated.

5. The losses due to end wall boundary layers and secondary flow was experimen-
tally determined to be 0. 018 at design critical velocity ratio. Of this loss, it was ana-
lytically determined that the end wall boundary layer loss was 0. 007 and, therefore, the
loss due to secondary flow is 0. 011 for this vane.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, January 30, 1975,
505-04.
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Figure 1. - Core stator annular cascade.

r Vane tip
Outer wall I coolant
coolant supply
supply -
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L Inner wall access
coolant / acs
supply

Figure 2. - Schematic cross-sectional view of core turbine stator cascade.
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X YL YU (V/Vcr) id, 1 0. 231

cm in. cm in. cm in. I
0 0 0.508 0.200 0.508 0.200
0. 127 0.050 ---------- .851 .335
.254 .100 ----- ----- 1.003 .395 / Axial
. 381 .150 ----- ----- 1. 120 .441 Radius, YL
.508 .200 ----- ----- 1.212 .477 0.508 YU
.635 .250 ----- ----- 1. 285 .506 (0. 200) '
.762 .300 .061 .024 1. 341 .528
.889 .350 .117 .046 1. 389 .547 X

1.016 .400 .163 .064 1.425 .561
1.143 .450 .201 .079 1.448 .570
1.270 .500 .236 .093 1.463 .576 Axial chord,
1. 397 .550 .267 .105 1.471 .579 3. 823 (1. 505) 60
1.524 .600 .292 .115 1.476 .581
1.778 .700 .328 .129 1.461 .575 ,Radius,
2.032 .800 .358 .141 1.427 .562 1 0.089
2.286 .900 .376 .148 1.377 .542 (0. 035)
2.540 1.000 .384 .151 1.321 .520
2.794 1. 100 .381 .150 1. 255 .494 i. 27 (0 50)
3.048 1.200 .368 .145 1. 191 .469 - - - - Survey plane
3.302 1.300 .353 .139 1. 110 .437 (station 3)
3.556 1.400 .328 .129 1.026 .404 Blade spacing,
3.810 1.500 .297 .117 .942 .371 4.102(1.615)
4.064 1.600 .262 .103 .848 .334
4.318 1.700 .221 .087 .747 .294
4.572 1.800 .178 .070 .635 .250
4. 826 1.900 .130 .051 .521 .205
5. 080 2.000 .084 .033 .399 .157 a3 = 670
5. 334 2.100 .025 .010 .267 .105
5.552 2.186 .089 .035 .089 .035 (VIVcr)id, 3M=0.778

Figure 3. - Core turbine stator vane geometry at mean section. (All dimensions in cm (in.) except as noted. )
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VIVcr = 0.231 Vane inlet

670
VIVcr= 0.834 Vane exit

44.10 -- WIWcr = 0.473

-58. 3o - UVcr 0.451

WIWcr= 0.29 -21.. o Rotor exit

VIV = 0. 425
UIVcr= 0.485 cr

(a) Hub section.

VIVcr = 0.231 Vane inlet

670 Vane exit

VIVcr= 0.778

36.70 -- WIWcr= 0.395

- 58.30 U/Vcr = 0.491

WIWcr = 0.749 -17.80 Rotor exit

Vncr =. 428
UIVcr= 0.528

(b) Mean section.

VIVcr = 0.231 Vane inlet

670 V/Vcr = 0.728 Vane exit

26.30 -- WIWcr 0.329

-58.30 UlVcr = 0.531
W crW 0"768

_ 14.30 Rotor exit

UIVcr 0.571 VIVcr = 0.432
U/Vcr =0.571

(c) Tip section.

Figure 4. - Turbine design velocity diagram.
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Flow

- - - Station 1

--- Test vanes 3. 8 cm (1. 5 in.)

I- Station 2 (vane trailing edge)
0---- e 0- - Station 3(survey plane)

1. 3 cim Middle test
0. 2 cm (0.5 in.) vane wake -

670 u(40 in. Survey probe
Probe
travel

-e-"*--.- - Station 3M
(aftermixed
conditions)

Test vanes o

- Combination
- - - -- - -survey probe

S - Vane trailing-edge

L Survey
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50

Angle tubes -

Prandtl tube 0. 64 cm Static pressure tap

Angle \ (0. 25 in.) tap

Total pressure -0

300

Figure 5. - Schematic of instrumentation for survey data.
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Figure .- Instrumented solid vanes.
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Total
Spressure 7

Figure 7. - Combination survey probe.
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1ip wall
- element

Hub wall
element

Figure & - End wall total pressure probe.
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1.0

A Suction surface
.8 O Pressure surface

/ - - CHANEL program
/ - TSONIC program

(Experimental after-
.6 - mixed flow angle,

SExit critical a3M = 64. 10)

velocity ratio

.4

.2 - Inlet critical
velocity ratio

(a) Hub radius.

1.0 A , Suction surface
O Pressure surface

- - CHANEL program
_ _ TSONIC program

S.8 - (Experimental after-
//// A  mixed flow angle,

/ / LExit critical 3 = 67.20
. velocity ratio

.6

.4

.2

3 \-inlet critical
velocity ratio

(b) Mean radius.

1.0

7-

/ LExit critical
.6 / velocity ratio

let critical Suction surface
.4ti O Pressure surface

.4 velocity ratio - - CHANEL program
- TSONIC program

(Experimental after-
2 mixed flow angle,

. 2 a3M = 66. 20)

0 20 40 60 80 100
Distance along axial chord, percent

(c) Tip radius.

Figure 9. - Distribution of vane surface critical velocity ratio at ideal aftermixed critical ve-

locity ratio of 0.785.
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- Experimental
70 - - TSONIC program

68

,": 66--
Trailing Trailing Trailing
edge edge edge
wake - wake wake-,

(a) Flow angle.
.85 ---- Experimental

TSONIC program (Experimental
aftermixed flow angle,

S3 = 67. 29
)

S.80

g .75

.70
0 4 8 12 16 20 24 28 32

Circumferential position, 83, deg
(b) Critical velocity ratio.

Figure 10. - Comparison of experimental and theoretical circumferential variation of exit
flow angle and critical velocity ratio at mean radius and ideal aftermixed critical velocity
ratio of 0.785.

C B EF G-H-H-G-F-EC 
AB

-G CB -- Trailing edgeSprojection

Efficiency \ (using
contour, 773 measured
A 0.98 E flow angles)
B .94
C .90 Vane
D .86 Suction Pressure height
E .82 surface surface
F .78
G .74 A B C C B A
H .72

D

A B - CDEF GGFEDCB A

Vane spacing

Figure 11. - Contours of efficiency at survey plane at ideal after-
mixed critical velocity of 0. 785.
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0 Combination probe

. 75 - - Combination orobe O End wall total pressure probe

Design .98

70-
.94

S 65 -

Ti 
..90

60
(a) Exit aftermixed flow angle. .86

.75C

S.82 -

S .70

t4 .78 -

" .65

,-Hub Tip, .74

.60 Hub Tip
0 20 40 60 80 100 ,-Hub Tip\

Vane radial position, percent of vane height

(b) Exit aftermixed pressure ratio. "70 20 40 60 80 100

Figure 12. - Variation of aftermixed flow angle and static- Vane radial position, percent of vane height

to-total pressure ratio with radial position at ideal after- Figure 13. - Variation of aftermixed efficiency with radial
mixed critical velocity ratio of 0.785. position at ideal aftermixed critical velocity ratio of 0.785.



O Overall efficiency
a Efficiency at mean radius

1.00 * Analytical two-dimensional
prediction

- Two-dimensional 10-vane
cascade (ref. 2)

" .98
SEnd wall

S and secondary
E flow losses

.96

'-.Design

S.94 I I
.5 .6 .7 .8 .9 1.0

Ideal aftermixed critical velocity ratio at mean radius,
(V3M/Vcr, 3M)id, mean

Figure 14. - Overall aftermixed efficiency as function of
ideal aftermixed critical velocity ratio.

---- Design
10 - Calculated from

' stator exit
measurements

0

S-10 -

, -Hub Tip-.& -20,' I I I I "
0 20 40 60 80 100

Vane radial position, percent of vane height

Figure 15. - Variation of rotor inlet relative incidence
angle with radial position at ideal aftermixed critical
velocity ratio of 0.785.
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